Control Buoys
Operability and Reliability Perceptions
SUT AOG Conference March 2010, Perth Convention and Exhibition Centre
Long Distance Tiebacks session
K Mullen and J R Whelan
Agenda

- What is a Control Buoy?
- Existing Control Buoys
- Control Buoy Concepts
- Economic Drivers
- Awareness and Perceptions Survey
- Address Perceptions

Control Buoy? Umbilical?
What is a Control Buoy?

- Alternative to long umbilicals
 - Permanently moored floating structure
 - Not normally manned
 - Communication
 - Satellite or radio communications from shore
 - Short umbilical to subsea wells
 - Control
 - LP/HP hydraulic supplies to subsea
 - Electrical power
 - Chemical injection
 - Corrosion inhibitor
 - Hydrate inhibitor
 - For start up (high rate)
 - Continuous (low rate)
 - Annulus venting
 - Hydrate remediation
Installed Buoys – Only Six World Wide

- Regnar Control Buoy (1993), North Sea. Converted CALM buoy
- Petrobas 4-ALS-39 Control Buoy (1996), Brazil. Converted Metocean Data Buoy
- Western Mining - East Spar NCC Buoy (1996), Australia
- Mobil – Zafiro Flare Buoy (1996), Equatorial Guinea
- MossGas - Mossel Bay EM Control Buoy (2000), South Africa
- CNR Lyell Power Buoy (2006), North Sea (Project Stalled) EcoNomics
Control Buoy – Design Issues

- How Big?
 - Well control only
 - Well control + Chemical injection
 - Well control + Chemicals + Helipad
 - How many wells?
 - Chemical flow rate?

- Hull Form?
 - Environment – Benign or Harsh?
 - Buoy Motions
 - Accessibility and maintainability
 - Acceptable working environment

- Cost
 - Fabrication + Installation
 - Operations

- Reliability / Redundancy

- Environmental

- Access
 - Helicopter
 - Supply Boat

- Maintenance
 - Schedule
 - Fuel / Chemical re-supply
 - Unplanned maintenance

- Safety
 - Personnel
 - Asset

- Communications
 - VHF/UHF/Satellite

- Step-out distance

- Control Buoy contents
 - Power generation
 - Electronics
 - Fluids
 - Pumps
 - Hydraulic power
 - Controls system
Range of Control Buoy Concepts

<table>
<thead>
<tr>
<th>Type</th>
<th>Virtual</th>
<th>Mini</th>
<th>Tension Leg</th>
<th>Disc</th>
<th>Spar</th>
<th>Multi-hull</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>100 kg</td>
<td>2-100 tonnes</td>
<td>400-800 tonnes</td>
<td>400-1,000 tonnes</td>
<td>1000-4,000 tonnes</td>
<td>2,000-10,000 tonnes</td>
</tr>
<tr>
<td>Payload</td>
<td>20 kg</td>
<td>2-20 tonnes</td>
<td>20-80 tonnes</td>
<td>100-300 tonnes</td>
<td>200-800 tonnes</td>
<td>500-2,000 tonnes</td>
</tr>
</tbody>
</table>
Tension Leg

- Extreme Environment
- Excellent Motions
- Modular Equipment packages
- Access and work environment

Examples
East Spar, Mossel Bay
Spar Control Buoy Concept

- **Spar concept**
 - Extreme Environment
 - Large Payload
 - Benign motions
 - Access by supply vessel or helicopter

- **Multi-Hull Buoy concepts**
 - Well Work Over Facility

(Marine Innovative Technology)
Mini Control Buoy Concept

- ~10-20 tonne payload
- Potential recovery to vessel
- Potential modular retrieval

Example
Petrobras 4-ALS-39 Control Buoy (1996)
Regnar (1993)
Disc Buoy concept

- Moderate environment
- Large payload
- Access by supply vessel or helicopter (Hs<2.0m)
- Similar to CALM
- Simple installation
Virtual Control Buoy concept

- No fixed infrastructure
- Autonomous vehicles
 - Divers
 - Floaters
 - Boats
- Station-keeping
- Self-powered wellheads
- Satellite communications to shore
- Acoustic communications to wellheads
CAPEX – Step out distance

- Umbilical CAPEX
- Buoy CAPEX

Umbilical cheaper than Control Buoy at certain distance.
NPV OPEX Control Buoy > Umbilical

Control Buoy cheaper Umbilical

+ Umb. OPEX (5yr)
+ Buoy OPEX (5yr)
Control Buoy Economics

NPV of OPEX Increases with Field Life

- Umbilical cheaper
- Control Buoy cheaper

+ Umb. OPEX (20yr)
+ Buoy OPEX (20yr)
Survey of major oil and gas companies
- Awareness and Perceptions of Control Buoys Survey 2008
- Undertaken for Department of Industry and Resources
- Data is Australian skewed
Control Buoy Survey - Awareness

- Are you aware of control buoys?
 - Yes 100%
 - No 0%

- How well informed are you regarding control buoys?
 - Very Little 0%
 - Moderate 50%
 - Well 50%

- Have you considered using a control buoy prior to 2007?
 - Yes 70%
 - No 30%

- Will you consider using a control buoy 2007-2015?
 - Yes 100%
 - No 0%
Why Were Control Buoys Rejected?

- **Operational**
 - Safety risk of personnel transfer / access
 - Enclosed and unventilated work environment
 - Response time to shut-down / repairs
 - Using helipad in remote areas
 - Supply boat access – sea sickness, time

- **Cost**
 - Risk weighted cost of Control Buoy was not compelling
 - CAPEX saving not enough to offset higher OPEX

- **Reliability**
 - Not sufficiently reliable for fixed delivery contracts (gas)
 - Local community interference
 - Potential shipping hazard

- **Field Specific Technical Feasibility**
What are your perceptions of control buoy reliability?

- Reliably: 20%
- Moderately Reliable: 80%
- Unreliable: 0%
Risk Cost: Control Buoy >> Umbilical

Case: CAPEX + OPEX (5yr)
Experience with Regnar buoy

- Converted CALM tanker loading buoy, 11 m diameter
- Marginal field - short tieback of 13 km – one well
- First 9 months of operation – no shutdowns
- Overall uptime has been 98%, only shutdowns have been due to platform
- Extensive pre-testing onshore resulted in a problem-free startup
- Access from vessels is “feasible”
- No lost time accidents (including transfers)
- Operated from 1993 to 2007
Experience with Petrobras buoy

- Converted metocean buoy – only 3.5 metres diameter
- Marginal field - short tieback of 22 km – one well
- Retrieval of buoy after one year for rebuild
 - Buoy hull selection was inappropriate - excessive heave
 - Pump failures due to water entry
 - Battery explosion
 - Difficult access
- Most of these problems solved after rebuild
- Field was a commercial success
Experience with East Spar buoy

- Purpose built spar – tension leg moored
- Long tieback – 65 km west of Varanus island – multi-well
- Loadout and installation before precommissioning completed
- Problems in first years of operation were mainly subsea
 - no communication or major failures with the buoy
 - earth leakage on one of the two redundant power lines
 - a failure to one multi-phase flow meter power pack
 - a failure in one of the two choke position indicators
 - a loss of signal from one well's DHP gauges
- Majority of minor failures on the buoy
 - Hydraulic Power Unit (HPU)
 - utility backup systems
- Access aided by “excellent” tension leg mooring
- Confined work environment
- Met reliability target of 98.5%
- Field was a commercial success
Conclusions and Best Practice

- Local user perceptions skewed by East Spar
 - The East Spar buoy was designed and built in a hurry to meet a commitment to supply gas

- What has been learnt puts us in a good position to improve new generations of control buoys
 - Address reliability, access and safety issues in FEED
 - Hull design for metocean conditions
 - Good working environment
 - Acceptable motions
 - Access to equipment compartments
 - Extensive onshore precommissioning
 - Equipment reliability with multiple sparing
 - Concept is also cost-effective for marginal short tiebacks

- Is the risk premium for control buoys over umbilicals justified?